Iterative Learning of Answer Set Programs from Context Dependent Examples
نویسندگان
چکیده
In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples must all be explained by a hypothesis together with a given background knowledge. In existing systems, the background knowledge is the same for all examples; however, examples may be context-dependent. This means that some examples should be explained in the context of some information, whereas others should be explained in different contexts. In this paper, we capture this notion and present a context-dependent extension of the Learning from Ordered Answer Sets framework. In this extension, contexts can be used to further structure the background knowledge. We then propose a new iterative algorithm, ILASP2i, which exploits this feature to scale up the existing ILASP2 system to learning tasks with large numbers of examples. We demonstrate the gain in scalability by applying both algorithms to various learning tasks. Our results show that, compared to ILASP2, the newly proposed ILASP2i system can be two orders of magnitude faster and use two orders of magnitude less memory, whilst preserving the same average accuracy. This paper is under consideration for acceptance in TPLP.
منابع مشابه
Incremental and Iterative Learning of Answer Set Programs from Mutually Distinct Examples
Over these years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive Logic Programming algorithms, have often failed at the task due to the vastne...
متن کاملLearning by Answer Sets
This paper presents a novel application of answer set programming to concept learning in nonmonotonic logic programs. Given an extended logic program as a background theory, we introduce techniques for inducing new rules using answer sets of the program. The produced new rules explain positive/negative examples in the context of inductive logic programming. The result of this paper combines tec...
متن کاملIterative Information Fusion using a Reasoner for Objects with Uninformative Belief Values
We describe an approach for iterative information fusion using a context-dependent Reasoner called Pequliar. The system basically consists of a query processor with fusion capability and a Reasoner with learning capability. The query processor first performs a query to produce some initial results. If the initial results are uninformative, then the Reasoner guided by the user creates a more ela...
متن کاملHeuristic Based Induction of Answer Set Programs: From Default theories to combinatorial problems
Significant research has been conducted in recent years to extend Inductive Logic Programming (ILP) methods to induce Answer Set Programs (ASP). These methods perform an exhaustive search for the correct hypothesis by encoding an ILP problem instance as an ASP program. Exhaustive search, however, results in loss of scalability. In addition, the language bias employed in these methods is overly ...
متن کاملLearning weak constraints in answer set programming
This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- TPLP
دوره 16 شماره
صفحات -
تاریخ انتشار 2016